> Workbook answers

Exercise 1.1

1 a

b No. The 125 can only become 5×25 and 25 as a factor of primes must be 5×5.
c

d $250=2 \times 5^{3}$
2 a \& b Many trees are possible but all end with
$2,2,3,5,5$.
c $\quad 300=2^{2} \times 3 \times 5^{2}$
3 a
2×3
ii $2 \times 3 \times 5$
iii $2 \times 3 \times 5 \times 7$
b $2 \times 3 \times 5 \times 7 \times 11=2310$; multiply the last number by the next prime

4 a 42
b 1764
c 74088
5 a Many trees are possible
b $\quad 8712=2^{3} \times 3^{2} \times 11^{2}$
6 a $96=2^{5} \times 3$
b 97 is a prime number
c $\quad 98=2 \times 7^{2}$
d $99=3^{2} \times 11$

7 a $70=2 \times 5 \times 7$
b $\quad 70^{2}=2^{2} \times 5^{2} \times 7^{2}$
c $70^{3}=2^{3} \times 5^{3} \times 7^{3}$
$8 \quad$ a i $\quad 3^{2}$ ii $\quad 2^{2} \times 3^{2}$
iii 3^{4} iv $2^{4} \times 3^{2}$
v $3^{2} \times 5^{2}$
vi $2^{6} \times 3^{2}$
vii 5^{4}
viii 7^{4}
b There is an even number of each prime factor.
c Using the result of part b, it is the square of $2^{2} \times 3 \times 5 \times 7$.

9 a $3^{2} \times 7=63$
b $3 \times 5=15$
c $2^{2} \times 3=12$
10 a 360 b 300 c 1800
11 a $104=2^{3} \times 13$
b $130=2 \times 5 \times 13$
c 26
d 520
12 a $135=3^{3} \times 5$
b $\quad 180=2^{2} \times 3^{2} \times 5$
c 45
d 540
13 a $343=7^{3}$
b $546=2 \times 3 \times 7 \times 13$
c 7
d 26754
14630
15 a 24 b 1848
16 a $\quad 48=2^{4} \times 3$ and $25=5^{2}$; there are no common prime factors, therefore the LCM is 1 .
b 1200
1718 and 24

Exercise 1.2

$1-1 \times-4=4 ;-3 \times-4=12 ;-5 \times-4=20$
$\begin{array}{lllllllll}2 & \text { a } & -40 & \text { b } & 40 & \text { c } & 99 & \text { d } & 120\end{array}$
3 A, B, D, F in one group and C, E in the other
4

\times	2	-4	-9
-6	-12	24	54
5	10	-20	-45
-8	-16	32	72

$\begin{array}{lllllllll}5 & \text { a } & 35 & \text { b } & -5 & \text { c } & 35 & \text { d } & 5\end{array}$
6 a 24 b -66
c 81
d 16
$7(-6)^{2}+(-8)^{2}-(-10)^{2}=36+64-100=0$
8 a

b If 3 and -2 are swapped and -1 and 4 are swapped, then the top number will be 3456.

9 a 1×-6 or -1×6 or 2×-3 or -2×3
b 1×6 or -1×-6 or 2×3 or -2×-3
10 a $63 \div-9=-7$ or $63 \div-7=-9$
b $-84 \div 12=-7$ or $-84 \div-7=12$
11 a $\quad-6 \quad b \quad 5$
c -9
d 13
e $\quad-12$
12 a -3
b 2
c -8
d $\quad-4$
13

$\begin{array}{llllllll}14 & \text { a } & -6 & \text { b } & 12 & \text { c } & -12 & \text { d }\end{array} 8$
$\begin{array}{llllllll}15 & \text { a } & 32 & b & -40 & c & -4 & d\end{array}-5$
16 a True. $-3 \times(-6 \times-4)=-3 \times 24=-72$ and $(-3 \times-6) \times-4=18 \times-4=-72$
b False. $-24 \div(-4 \div-2)=-24 \div 2=-12$ and $(-24 \div-4) \div-2=6 \div-2=-3$

Exercise 1.3

1	a	196	b	196	c	400	d
2	a	64	b	-216	c	-1000	d

b i $x=-2$ or 1
ii $\quad x=1$
9 a Yes. If $x=5$ then
$x^{3}-x=5^{3}-5=125-5=120$
b No. If $x=-5$ then

$$
x^{3}-x=-125--5=-120
$$

10 a $64=2^{6}$
b $2^{6}=\left(2^{3}\right)^{2}=8^{2}$ and $\left(2^{2}\right)^{3}=4^{3}$
c $729=3^{6}$
d $3^{6}=\left(3^{3}\right)^{2}=27^{2}$ and $\left(3^{2}\right)^{3}=9^{3}$
e 1 is both a square number and a cube number. So is $4^{6}=4096$ or $5^{6}=15625$; other answers are possible.
$11 x^{6}=64$
So $\left(x^{3}\right)^{2}=64$
So $x^{3}=8$ or -8
If $x^{3}=8$ then $x=2$
If $x^{3}=-8$ then $x=-2$
There are two possible answers, $x=2$ or -2

Exercise 1.4

1 a 3^{3}
b $\quad 7^{4}$
c 12^{6}
d 15^{5}
2 a 6^{6}
b 10^{7}
c $\quad 3^{9}$
d 14^{7}

3 a $2^{0}+2^{1}+2^{2}+2^{3}=1+2+4+8=15=$ $16-1=2^{4}-1$
b $\quad 2^{6}-1$
c No. $3^{0}+3^{1}+3^{2}+3^{3}=1+3+9+27=40$
and $3^{4}-1=81-1=80$ so they are not equal.
4 a 5^{6}
b 15^{6}
c $\quad 7^{9}$
d 3^{20}
5 a 2^{2}
b $\quad 2^{6}$
c 3^{6}
6 a 5^{8}
b 5^{12}
c 5^{16}
7 a 4^{3}
b 7^{2}
c $\quad 15^{3}$
d 15^{0} or 1
8 a 8^{2}
b 5^{4}
c $\quad 2^{8}$
d 3^{3}
e 12^{0} or 1
$9 \quad$ a $\quad 6^{3} \quad$ b $\quad 6^{4}$
c 6^{8}
d $\quad 6^{6}$
10 a 2^{7}
b 3^{3}
c $\quad 2^{4}$ or 4^{2}
d 3^{0} or 1
11 a 5^{3} b 5
c 5^{12}
12 a 12^{8}
b $\quad 12^{12}$
c 12^{2}

13 No, Marcus is not correct.
$2^{4}=2 \times 2 \times 2 \times 2=16$ and $4^{2}=4 \times 4=16$ so these are equal.
However $3^{4}=3 \times 3 \times 3 \times 3=81$ and $4^{3}=4 \times 4 \times 4=64$ and these are not equal.

Exercise 2.1

1 A and ii, B and vi, C and \mathbf{v}, \mathbf{D} and iii, \mathbf{E} and iv, \mathbf{F} and \mathbf{i}

2 a 3 books: $3 \times 2=6$
b 5 books: $5 \times 2=10$
c 8 books: $8 \times 2=16$
d x books: $x \times 2=2 x$
e y books: $y \times 2=2 y$
f b books: $b \times 2=2 b$

3 a 4 sweets: $4 \div 2=2$
b $\quad 10$ sweets: $10 \div 2=5$
c 12 sweets: $12 \div 2=6$
d x sweets: $x \div 2=\frac{x}{2}$
e y sweets: $y \div 2=\frac{y}{2}$
f s sweets: $s \div 2=\frac{s}{2}$
4 a $\quad c-2$ b $\quad c+2$
C $\frac{c}{2}$
d $2 c$
5 A and \mathbf{v}, \mathbf{B} and i, C and vi, \mathbf{D} and ii, E and iv, F and iii

6 a $7 n+4$
b $\frac{n}{6}-8$
c $\frac{n+4}{5}$
d $\frac{n-4}{5}$
7 a Equivalent to $\frac{7 x}{8}$ are: A, E, F, G, J
Equivalent to $\frac{x+7}{8}$ are: \mathbf{D}, \mathbf{I}
Equivalent to $x+\frac{7}{8}$ are: \mathbf{C}, \mathbf{H}
b $\quad \mathbf{B} \frac{x-7}{8}$
8 The answer to a is incorrect. It should be $\frac{x}{5}+7$
The answer to b is correct
9 a i $\quad \frac{x}{4}+5$ or $\frac{1}{4} x+5$ ii $\quad \frac{3 x}{5}-2$ or $\frac{3}{5} x-2$
iii $1+\frac{x}{2}$ or $1+\frac{1}{2} x$ iv $11-\frac{5 x}{6}$ or $11-\frac{5}{6} x$
b i half of x subtract 9
ii two-thirds of x add 10
iii 25 subtract two-ninths of x
iv 12 add seven-tenths of x
10 a perimeter $=16 w+2 v+6 \mathrm{~cm}$
area $=8 v w+24 w \mathrm{~cm}^{2}$
b perimeter $=18 x+\frac{5}{4} y \mathrm{~cm}$
area $=\frac{45}{8} x y \mathrm{~cm}^{2}$
$11 \frac{5}{2} a-\frac{3}{2} b$

