e $\frac{1}{6}$ recurring f $\frac{7}{10}$ terminating
8 a recurring
b terminating
c recurring
d terminating
9 a, b

Number of days off work due to illness					
Abi	$\frac{8}{30}=\frac{4}{15}$	Bim	$\frac{5}{30}=\frac{1}{6}$	Caz	$\frac{3}{30}=\frac{1}{10}$
Dave	$\frac{6}{30}=\frac{1}{5}$	Enid	$\frac{2}{30}=\frac{1}{15}$	Fin	$\frac{9}{30}=\frac{3}{10}$

Learner's own decisions on how to group the students.
For example: A and \mathbf{F} are not unit fractions;
$\mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E} are unit fractions.
OR
\mathbf{A}, \mathbf{B} and \mathbf{E} are recurring decimals; \mathbf{C}, \mathbf{D} and \mathbf{F} are terminating decimals.

10 a For example:

- $\frac{1}{6}+\frac{2}{3}=\frac{5}{6}$
ii $\frac{3}{5}+\frac{2}{9}=\frac{37}{45}$
iii $\frac{1}{6}+\frac{1}{3}=\frac{1}{2}$
iv $\frac{2}{5}+\frac{1}{4}=\frac{13}{20}$
b i $\frac{5}{18}+\frac{2}{3}=\frac{17}{18}$
ii $\frac{3}{5}+\frac{2}{9}=\frac{37}{45}$
iii $\frac{1}{6}+\frac{1}{3}=\frac{1}{2}$
iv $\frac{2}{5}+\frac{1}{4}=\frac{13}{20}$
c No. Learner's own examples. For example: $\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$ (terminating), $\frac{2}{5}+\frac{3}{8}=\frac{31}{40}$ (terminating), $\frac{3}{10}+\frac{4}{25}=\frac{23}{50}$ (terminating).

Exercise 8.2

1 a $2 \frac{1}{8}+\left(1 \frac{1}{2}-\frac{1}{4}\right)$ Brackets: $1 \frac{1}{2}-\frac{1}{4}=1 \frac{2}{4}-\frac{1}{4}=1 \frac{1}{4}$
Addition: $2 \frac{1}{8}+1 \frac{1}{4}=2 \frac{1}{8}+1 \frac{2}{8}=3 \frac{3}{8}$
b $3+\frac{2}{3} \times \frac{4}{5} \quad$ Multiplication: $\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}$
Addition: $3+\frac{8}{15}=3 \frac{8}{15}$
c $2^{2} \div \frac{3}{5}-1 \frac{5}{6} \quad$ Indices: $\quad 2^{2}=4$
Division: $4 \div \frac{3}{5}=4 \times \frac{5}{3}=\frac{20}{3}$
Subtraction: $\frac{20}{3}-1 \frac{5}{6}=\frac{40}{6}-\frac{11}{6}=\frac{29}{6}=4 \frac{5}{6}$
2 a $4 \frac{3}{4}$
b $2 \frac{2}{5}$
C $2 \frac{3}{4}$
d 5

3 A and ii, \mathbf{B} and iii, \mathbf{C} and \mathbf{i}

4 a-d i Learner's own estimates.
a ii $6 \frac{1}{4}$
b ii $11 \frac{7}{18}$
c ii $40 \frac{5}{8}$
d ii $15 \frac{13}{14}$

5 a $25 \frac{49}{50}-\left(4 \frac{2}{5}+12 \frac{7}{25}\right)$ or equivalent.
b Learner's own answer and explanation. For example: He cannot be correct because if you round both sides up and add them to 6 you get $6+5+13=24$. This is nearly 2 m less than the perimeter, so the third side must be at least 2 m more than 6 m .
c $\quad 9 \frac{3}{10} \mathrm{~m}$. Learner's own answer and explanation.
$6 \quad 56 \frac{7}{10} \mathrm{~kg}$
7 Division: $\frac{2}{3} \div \frac{3}{7}=\frac{2}{3} \times \frac{7}{3}=\frac{14}{9}$
Multiplication: $6 \frac{1}{2} \times 7=\frac{13}{2} \times 7=\frac{91}{2}$
Addition: $\frac{14}{9}+\frac{91}{2}=\frac{28}{18}+\frac{819}{18}=47 \frac{1}{18}$
$8 \quad 16 \frac{29}{36} \mathrm{~m}^{2}$
9 a $15 \frac{3}{4} \quad$ b $35 \frac{7}{16} \quad$ c $910 \frac{4}{5}$
10 a $\left(1 \frac{5}{6}\right)^{2}+1 \frac{5}{6} \times 3 \frac{1}{3}$ or equivalent.
b $9 \frac{17}{36} \mathrm{~m}^{2}$
11 a $8 \frac{5}{9} \mathrm{~cm}^{2}$ b 12 cm

Exercise 8.3

1 a $\frac{2}{3} \times 12=\frac{2}{3} \times 3 \times 4=2 \times 4=8$
b $\frac{3}{5} \times 20=\frac{3}{5} \times 5 \times 4=3 \times 4=12$
c $\frac{5}{6} \times 18=\frac{5}{6} \times 6 \times 3=5 \times 3=15$
d $\frac{4}{9} \times 27=\frac{4}{9} \times 9 \times 3=4 \times 3=12$
e $\frac{3}{4} \times 32=\frac{3}{4} \times 4 \times 8=3 \times 8=24$
f $\frac{5}{8} \times 48=\frac{5}{8} \times 8 \times 6=5 \times 6=30$
g $\frac{4}{7} \times 35=\frac{4}{7} \times 7 \times 5=4 \times 5=20$
$\begin{array}{lllllll}2 & \text { a } & 6 & \text { b } & 18 & \text { c } & 28\end{array}$
3 a $\frac{1}{8} \times 20=\frac{1}{4 \times 2} \times 4 \times 5=\frac{1 \times 5}{2}=\frac{5}{2}=2 \frac{1}{2}$
b $\frac{3}{10} \times 25=\frac{3}{2 \times 5} \times 5 \times 5=\frac{3 \times 5}{2}=\frac{15}{2}=7 \frac{1}{2}$
c $\frac{3}{4} \times 14=\frac{3}{2 \times 2} \times 2 \times 7=\frac{3 \times 7}{2}=\frac{21}{2}=10 \frac{1}{2}$
d $\quad \frac{5}{9} \times 24=\frac{5}{3 \times 3} \times 3 \times 8=\frac{5 \times 8}{3}=\frac{40}{3}=13 \frac{1}{3}$
4 a $4 \frac{1}{2}$
b $3 \frac{3}{4}$
C $9 \frac{1}{3}$
5 a 9
b $\quad 12$
c 15
d 33
e 30
f $6 \frac{3}{4}$
g $9 \frac{1}{3}$
h $3 \frac{1}{3}$
i $13 \frac{1}{5}$
j $11 \frac{1}{5}$
6 a $\frac{18}{35}$
b $\frac{7}{15}$
C $\frac{35}{48}$
d $\frac{19}{24}$
e $\frac{21}{40}$
f $\frac{9}{13}$
g $\frac{1}{9}$
h $\frac{1}{5}$
i $\frac{7}{11}$
j $\frac{1}{9}$
7 a $\frac{1}{16}$
b $\frac{1}{15}$
8 Sarah is incorrect. 21 cm is the smallest whole number value for d so that the circumference is greater than 64 cm .

Learner's own working. For example:
When $d=22 \mathrm{~cm}, C=\frac{22}{7} \times 22=\frac{484}{7}=69 \frac{1}{7} \mathrm{~cm}$,
$69 \frac{1}{7}>64$
When $d=21 \mathrm{~cm}, C=\frac{22}{7} \times 21=22 \times 3=66 \mathrm{~cm}$,
$66>64$ $66>64$
When $d=20 \mathrm{~cm}, C=\frac{22}{7} \times 20=\frac{440}{7}=62 \frac{6}{7} \mathrm{~cm}$, $62 \frac{6}{7}<64$

9 a-f i Learner's own estimates.
a ii $3 \frac{3}{20}$
b ii $5 \frac{1}{4}$
c ii $4 \frac{9}{14}$
d ii $11 \frac{2}{3}$
e ii $2 \frac{16}{25}$
f ii $22 \frac{1}{2}$
10 a $1 \frac{11}{25} \mathrm{~m}^{2}$
b $4 \frac{1}{6} \mathrm{~m}^{2}$
c $5 \frac{1}{5} \mathrm{~m}^{2}$
d $1 \frac{43}{56} \mathrm{~m}^{2}$
$1124 \mathrm{~m}^{3}$
12 a Learner's own examples of two proper fractions that when multiplied do not cancel.
e.g. $\frac{1}{3} \times \frac{2}{5}=\frac{2}{15}, \frac{2}{7} \times \frac{3}{11}=\frac{6}{77}$
b Learner's own answer and explanation. For example: When the four numbers in the fractions are all different and are all prime numbers or 1 , then you will not be able to cancel. When one of the numerators and denominators are the same, then you will be able to cancel. When one of the numerators and denominators are even, then you will be able to cancel. When one of the numerators and denominators are a multiple of each other, then you will be able to cancel.
$13\left(\frac{2}{3}\right)^{2}+2 \frac{1}{3} \times \frac{4}{5}=2 \frac{14}{45}$

Exercise 8.4

$1 \mathbf{A}$ and ii, \mathbf{B} and \mathbf{v}, \mathbf{C} and \mathbf{i}, \mathbf{D} and iii, \mathbf{E} and iv
2 a $12 \div \frac{2}{3}=12 \times \frac{3}{2}=6 \times 2 \times \frac{3}{2}=6 \times 3=18$
b $18 \div \frac{3}{4}=18 \times \frac{4}{3}=6 \times 3 \times \frac{4}{3}=6 \times 4=24$
c $\quad 20 \div \frac{4}{7}=20 \times \frac{7}{4}=5 \times 4 \times \frac{7}{4}=5 \times 7=35$
d $30 \div \frac{2}{3}=30 \times \frac{3}{2}=15 \times 2 \times \frac{3}{2}=15 \times 3=45$
e $\quad 24 \div \frac{4}{5}=24 \times \frac{5}{4}=6 \times 4 \times \frac{5}{4}=6 \times 5=30$
3 a
$15 \div \frac{6}{7}=15 \times \frac{7}{6}=5 \times 3 \times \frac{7}{3 \times 2}=\frac{5 \times 7}{2}=\frac{35}{2}=17 \frac{1}{2}$
b
$12 \div \frac{8}{9}=12 \times \frac{9}{8}=3 \times 4 \times \frac{9}{4 \times 2}=\frac{3 \times 9}{2}=\frac{27}{2}=13 \frac{1}{2}$
c
$20 \div \frac{6}{5}=20 \times \frac{5}{6}=10 \times 2 \times \frac{5}{2 \times 3}=\frac{10 \times 5}{3}=\frac{50}{3}=16 \frac{2}{3}$
$15 \div \frac{10}{13}=15 \times \frac{13}{10}=3 \times 5 \times \frac{13}{5 \times 2}=\frac{3 \times 13}{2}=\frac{39}{2}=19 \frac{1}{2}$
4 A and iii, \mathbf{B} and \mathbf{v}, \mathbf{C} and ii, \mathbf{D} and $\mathbf{i v}, \mathbf{E}$ and \mathbf{i}
5 a 25
b $15 \frac{3}{4}$
c 88
d $\quad 35 \frac{1}{5}$
e $16 \frac{1}{2}$
f $20 \frac{1}{4}$

6 a $\frac{15}{16}$
b $4 \frac{1}{6}$
C $1 \frac{19}{26}$
d $2 \frac{4}{9}$
e $4 \frac{1}{5}$
f $\frac{10}{11}$
7 D 1, A $1 \frac{1}{14}$, C $1 \frac{1}{3}$, B $1 \frac{11}{16}$
8 Estimates are given first, then the accurate answers:
a $1, \frac{25}{26}$
b $4,3 \frac{1}{8}$
C $\frac{3}{5}, \frac{3}{5}$
d $\frac{4}{3}=1 \frac{1}{3}, 1 \frac{5}{21}$
e 5,4
f $\quad \frac{7}{2}=3 \frac{1}{2}, 3 \frac{1}{9}$

9 Sofia is incorrect. Learner's own examples. e.g.
$\frac{1}{2} \div \frac{1}{4}=2, \frac{2}{3} \div \frac{3}{5}=\frac{10}{9}$
10 a $\frac{5}{12}$, check $\frac{5}{12} \times \frac{3}{5}=\frac{3}{12}=\frac{1}{4}$
b $4 \frac{4}{5}$, check $\frac{24}{5} \times \frac{1}{6}=\frac{4}{5}$
c $\frac{13}{21}$, check $\frac{13}{21} \times \frac{12}{13}=\frac{12}{21}=\frac{4}{7}$
d $1 \frac{1}{5}$, check $\frac{6}{5} \times \frac{3}{4}=\frac{18}{20}=\frac{9}{10}$
11 a $\frac{7}{20}$
b $1 \frac{7}{15}$
c $1 \frac{12}{25}$
1250 kg
$132 \frac{3}{4} \mathrm{~m}$
14 a Learner's own explanation. For example:
He rounded $3 \frac{1}{4}$ to 3 and he rounded $9 \frac{3}{8}$ to 9. So $3: 9=1: 3$.
b Completing the working gives
$1: \frac{75}{26} \times \frac{4^{1}}{13}=1: \frac{75}{26}=1: 2 \frac{23}{26}$
c Yes, $1: 2 \frac{23}{26} \approx 1: 3$
d $1: \frac{2}{3}$
e $1: 1 \frac{2}{5}$
$15 \frac{4}{7} \div \frac{3}{14}=2 \frac{2}{3}, 1 \frac{1}{2}+3 \frac{2}{3}=5 \frac{1}{6}$,
$2 \frac{2}{5} \times 1 \frac{1}{2}=3 \frac{3}{5}, 8 \frac{3}{4}-2 \frac{5}{6}=5 \frac{11}{12}$

Exercise 8.5

1 a
$\left(\frac{1}{2}+1.5\right)^{2}+9 \Rightarrow\left(\frac{1}{2}+1 \frac{1}{2}\right)^{2}=(2)^{2}=4 \Rightarrow 4+9=13$
b
$\left(2 \frac{3}{5}-0.6\right)^{3}-3 \Rightarrow\left(2 \frac{3}{5}-\frac{3}{5}\right)^{3}=(2)^{3}=8 \Rightarrow 8-3=5$
c
$5^{2}-\left(4 \frac{1}{4}+0.75\right) \Rightarrow\left(4 \frac{1}{4}+\frac{3}{4}\right)=5 \Rightarrow 5^{2}=25$
$\Rightarrow 25-5=20$
2 a 80
b 81
C $4 \frac{3}{5}$
3 a
$3.5 \times 1.5 \times 12 \Rightarrow \frac{7}{2} \times \frac{3}{2}=\frac{21}{4} \Rightarrow \frac{21}{14} \times 12^{3}=21 \times 3=63$
b

$$
\begin{aligned}
1.75 \times 2 \frac{1}{2} \times 32 \Rightarrow \frac{7}{4} \times \frac{5}{2}=\frac{35}{8} & \Rightarrow \frac{35}{18} \times 32^{4} \\
& =35 \times 4=140
\end{aligned}
$$

c
$4.7 \times 35 \Rightarrow 4 \frac{7}{10} \times 35=\frac{47}{10} \times 35 \Rightarrow \frac{47}{{ }_{2} 1 Q} \times 35^{7}$ $=\frac{329}{2}=164 \frac{1}{2}$

4 a 45
b 234
c $\quad 49 \frac{1}{2}$
$5 \quad 175 \mathrm{~cm}^{3}$
6 a
$0.44 \times 5^{2} \Rightarrow 0.44=\frac{44}{100}, 5^{2}=25 \Rightarrow \frac{44}{{ }_{4} 10 Q} \times 25^{1}=11$ b
$0.9 \times 6 \frac{2}{3} \Rightarrow 0.9=\frac{9}{10}, 6 \frac{2}{3}=\frac{20}{3} \Rightarrow \frac{{ }^{3} \phi}{{ }_{1} \mathrm{YQ}} \times \frac{2 Q^{2}}{\not{ }_{1}}=6$
c
$2.4 \times\left(3^{3}-7\right) \Rightarrow 2.4=\frac{24}{10}, 3^{3}-7=20 \Rightarrow \frac{24}{1 Q} \times 2 Q^{2}$ $=48$

7 a 1
b $\quad 12$
c 57
$8 \frac{4}{5} \mathrm{~m}^{2}$
9 a $38 \frac{1}{2} \mathrm{~cm}^{2}$
b $\quad 19 \frac{5}{8} \mathrm{~m}^{2}$
$10 \frac{1}{5} \mathrm{~m}$
$118 \frac{3}{4}$
12 Terms are $12,15,18$. nth term rule is $3 n+9$, so 50 th term $=159$.

13 a $\quad V=154 \mathrm{~cm}^{3}$
b $\quad 3 V=3 \times 154, \pi h=\frac{22}{7} \times 12=\frac{22 \times 12}{7}$ $\frac{3 V}{\pi h}=\frac{3 \times 154}{\frac{22 \times 12}{7}}=\frac{{ }^{1} 3 \times 154^{7} \times 7}{1^{22} \times 12_{4}}=\frac{49}{4}$ and $r=\sqrt{\frac{49}{4}}=\frac{7}{2}=3.5$
c $r=\sqrt{\frac{3 \times 27}{\frac{22}{1} \times 154^{22}}}=\sqrt{\frac{81}{22^{2}}}=\sqrt{\frac{9^{2}}{22^{2}}}=\frac{9}{22}$
Check:
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{{ }_{1}} \times \frac{{ }^{1}}{\frac{22}{1} \not \partial} \times \frac{9^{3}}{22_{1}} \times \frac{9}{22_{1}} \times 154^{\not \lambda_{1}}=3 \times 9=27$

Exercise 9.1

1 a $5,7,9,11,13$
b $0,3,6,9,12$
c $11,9,7,5,3$
d $2,2.5,3,3.5,4$
e $210,190,170,150,130$
2 a 4, 5, 7, 10, 14
b $5,7,11,17,25$
c $20,17,13,8,2$
3 a non-linear b linear
c linear d non-linear
4 a linear b non-linear
c linear d linear
e non-linear f linear
5 a $9,5,1,-3, \ldots$
b $12,17,22,27, \ldots$
c $3,4,6,9, \ldots$
d $10,9,7,4, \ldots$
e $64,40,28,22, \ldots$
f $8,10,14,22, \ldots$
6 A and iv, \mathbf{B} and ii, \mathbf{C} and \mathbf{i}, \mathbf{D} and iii
7 a $5,6,17, \ldots$
b $-1,2,5, \ldots$
c $4,1,4, \ldots$
d $-2,0,4, \ldots$
8 a $3,4 \frac{1}{3}, 5 \frac{2}{3}, 7,8 \frac{1}{3}, 9 \frac{2}{3}, 11$
b $10,9 \frac{1}{5}, 8 \frac{2}{5}, 7 \frac{3}{5}, 6 \frac{4}{5}, 6,5 \frac{1}{5}$
c $-6,-5.6,-5.2,-4.8,-4.4,-4,-3.6$
d $7.5,6.25,5,3.75,2.5,1.25,0$
9 a B
b The 6th term, which is 2390 . (Sequence is $3,10,38,150,598,2390, \ldots$)

10 a $7,8,11,16, \ldots$
b $15,19,26,36, \ldots$
c $17,15,11,5, \ldots$
d $32,24,12,-4, \ldots$
11 a A 343; B 64; C 179
b $64,179,343$ or $\mathbf{B}, \mathbf{C}, \mathbf{A}$
12 Sofia is incorrect. Learner's own explanation. For example:

If $\boldsymbol{*}=9$, then the sequence is $-2,1,10$,
1009, ...
If $\boldsymbol{*}=8$, then the sequence is $-2,0,8$,
520, ...
If $\boldsymbol{*}=7$, then the sequence is $-2,-1,6$,
223, ...
If $\boldsymbol{*}=6$, then the sequence is $-2,-2,-2$,
$-2, \ldots$
If $\boldsymbol{*}=5$, then the sequence is $-2,-3,-22$,
-10643, ...
So, as long as $\boldsymbol{*}$ is greater than 6 , there will be positive numbers in the sequence.

13 Timo's method is incorrect. Learner's own explanation. For example: He has reversed the order of the operations, but he hasn't used inverse operations to reverse the actual operations. Correct solution is: 4 th term $=72+8=80,80 \div 2=40$, 3 rd term $=40+8=48,48 \div 2=24$.

1416
15 Two of the terms in the sequence are negative.
Learner's own working. For example:
Sequence is $-4,2,-10,86, \ldots$
16 First term $=-10$. Learner's own working. For example: 4th term $=512$, 3rd term $=0$, reverse the function so rule is cube root and subtract ?.

$$
\begin{aligned}
\sqrt[3]{512}-? & =0 \\
8-? & =0 \\
? & =8
\end{aligned}
$$

The reverse function is cube root and subtract 8 .
2nd term $=\sqrt[3]{0}-8=-8,1$ st term $=\sqrt[3]{-8}-8=-10$

Exercise 9.2

1 a 1 st term $=3 \times 1=3$ 2nd term $=3 \times 2=6$ 3 rd term $=3 \times 3=9 \quad 4$ th term $=3 \times 4=12$
b 1 st term $=\frac{1}{4} \times 1=\frac{1}{4} \quad 2$ nd term $=\frac{1}{4} \times 2=\frac{2}{4}=\frac{1}{2}$ 3 rd term $=\frac{1}{4} \times 3=\frac{3}{4} \quad 4$ th term $=\frac{1}{4} \times 4=\frac{4}{4}=1$
c 1 st term $=1^{2}=1 \quad 2$ nd term $=2^{2}=4$
3rd term $=3^{2}=9 \quad 4$ th term $=4^{2}=16$
d $\quad 1$ st term $=1^{3}=1 \quad 2$ nd term $=2^{3}=8$
3 rd term $=3^{3}=27 \quad 4$ th term $=4^{3}=64$
2 a 1 st term $=6 \times 1+1=7$
2 nd term $=6 \times 2+1=13$
3rd term $=6 \times 3+1=19$
10 th term $=6 \times 10+1=61$
b $\quad 1$ st term $=1^{2}-1=0 \quad$ nd term $=2^{2}-1=3$
3 rd term $=3^{2}-1=8 \quad 10$ th term $=10^{2}-1=99$
c 1 st term $=\frac{1}{2} \times 1=\frac{1}{2}$ nd term $=\frac{1}{2} \times 2=\frac{2}{2}=1$
3 rd term $=\frac{1}{2} \times 3=\frac{3}{2}=1 \frac{1}{2}$
10 th term $=\frac{1}{2} \times 10=\frac{10}{2}=5$
d $\quad 1$ st term $=\frac{1}{2} \quad 2$ nd term $=\frac{2}{2}=1$
3 rd term $=\frac{3}{2}=1 \frac{1}{2} \quad 10$ th term $=\frac{10}{2}=5$
3 a They are the same.
b i The sequence $\frac{1}{2} n$ is the same as $\frac{n}{2}$.
ii The sequence $\frac{1}{3} n$ is the same as $\frac{n}{3}$.
iii The sequence $\frac{1}{5} n$ is the same as $\frac{n}{5}$.
iv The sequence $\frac{3}{4} n$ is the same as $\frac{3 n}{4}$.
4 A and iv, \mathbf{B} and \mathbf{i}, \mathbf{C} and \mathbf{v}, \mathbf{D} and vi, \mathbf{E} and iii, \mathbf{F} and ii

5 a $15,23,31, \ldots, 87$ b $-1,6,13, \ldots, 62$
c $-3 \frac{1}{2},-3,-2 \frac{1}{2}, \ldots, 1$
d $\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \ldots, 1$
e $21,24,29, \ldots, 120$

6 A and iv, B and iii, C and i, D and ii
7 a Learner's own answers.
b $\quad \mathbf{B}$ has the smaller value.
A 11 th term $=121-33=88$,
B 120th term $=\frac{2}{3} \times 120+7=87$.
c Learner's own answers.

8 a linear
b quadratic
c neither
d quadratic
e neither
f linear
9 a n^{2}
b $n^{2}+20$
c $n^{2}-2$
d $n^{2}+7$
10 Learner's own explanations. For example:
For the sequence $n^{2}-10$, the first term will be negative, so 7 cannot be the first term.
11 a $\frac{n}{13}$
b $\frac{n}{9}$
C $\frac{n}{12}$

12 a $\quad \mathbf{A} \frac{3}{5}, \mathbf{B} \frac{5}{8}, \mathbf{C} \frac{4}{7}$
b $\mathbf{C} \frac{4}{7}, \mathbf{A} \frac{3}{5}, \mathbf{B} \frac{5}{8}$
13 a No. $n^{2}+34=292, n^{2}=258, n=\sqrt{258}=$ $16.06 \ldots$, which is not a whole number.
b Yes. $\sqrt[3]{5832}=18$, which is a whole number. 5832 is the 18 th term in the sequence.
14 a $\frac{1}{3} n+8 \frac{1}{3}$
b $\quad 12.8-0.3 n$
C $-2 \frac{3}{4}-\frac{1}{2} n$
d 3.5-3.5n
15 a $2,7,14, \ldots$
b 119
16 a $9,17,27, \ldots 153$
b $1,10,25, \ldots, 298$
c $9,12,19, \ldots, 180$

Exercise 9.3

b They are the same.
c i $y=x^{2}$ ii $y=x^{3}$
d i

ii

3 a i

ii

x	1	3	10
y	-1	25	998

b
i $y=x^{2}+1$
ii $y=x^{3}-2$
4 a

ii

iii

x	-1	2	4
\boldsymbol{y}	0	27	125

b
i $y=4 x^{2}$
ii $y=(3 x)^{2}$
iii $y=(x+1)^{3}$
5 a

ii

iii

x	-3	$-\frac{1}{2}$	$\frac{1}{2}$
y	$-27 \frac{1}{2}$	$-\frac{5}{8}$	$-\frac{3}{8}$

b i $\quad y=(x-4)^{2}$
ii $y=x^{2}+5$
iii $y=x^{3}-\frac{1}{2}$
6 a

b

\boldsymbol{x}	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	2
\boldsymbol{y}	$\frac{1}{16}$	$\frac{1}{4}$	1	16

7 a

x	2	-4	-6	-10
y	2	8	18	50

ii

x	5	-3	-15	-7
y	64	0	144	16

b i $y=\frac{x^{2}}{2}$
ii $y=(x+3)^{2}$

8 Sofia is correct. Learner's own explanation. For example: When you square the positive and negative of the same number you get the same answer, e.g. $2^{2}=(-2)^{2}=4$ and $5^{2}=(-5)^{2}=25$.

Zara is incorrect. Learner's own explanation.
For example: When you add 1 to the positive and negative of the same number you get different answers, so when you square these answers, your final answers will be different, e.g. $(2+1)^{2}=3^{2}=9$ and $(-2+1)^{2}=(-1)^{2}=1$.

9 a i $y=x^{4}$
ii $x= \pm \sqrt[4]{y}$
iii Learner's own check.
b i $\quad y=x^{5}$
ii $x=\sqrt[5]{y}$
iii Learner's own check.
c i $\quad y=(3 x)^{2}$
ii $x= \pm \frac{\sqrt{y}}{3}$
iii Learner's own check.
d i $y=x^{3}-10$
ii $x=\sqrt[3]{y+10}$
iii Learner's own check.
e i $\quad y=\left(\frac{x}{4}\right)^{2}$
ii $x= \pm 4 \sqrt{y}$
iii Learner's own check.
f i $\quad y=\frac{x^{3}}{2}$
ii $\quad x=\sqrt[3]{2 y}$
iii Learner's own check.
$10 \mathrm{a}, \mathrm{b}$ Learner's own answers for grouping the functions: For example:

- One step functions: $\mathbf{B}, \mathbf{F}, \mathbf{G}, \mathbf{L}$

Two step functions: A, C, D, E, H, I, J, K

- Contains a power: A, C, D, F, H, J

Contains a root: B, E, I, K
Contains no powers or roots: \mathbf{G}, \mathbf{L}

- Contains the number 4: A, D, E, L

Contains the number 9: G, H, I, K
Contains the number 2: C, J
Contains no numbers: B, F

- Contains fractions: C, D, E, I

Contains no fractions: $\mathbf{A}, \mathbf{B}, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{J}$,
K, L
11 Sofia and Zara are both correct. The table of values works for both equations.

This is because
$x= \pm \sqrt{4 y}= \pm \sqrt{4} \times \sqrt{y}= \pm 2 \times \sqrt{y}= \pm 2 \sqrt{y}$
12

$y=10 x^{3}$

\boldsymbol{x}	$\frac{1}{2}$	$\frac{1}{4}$	-3
\boldsymbol{y}	$1 \frac{1}{4}$	$\frac{5}{32}$	-270

Learner's own explanation. For example:
Start by working out the missing number in the function machine using the first pair of values in the table.
$\left(\frac{1}{2}\right)^{3} \times ?=1 \frac{1}{4}, \frac{1}{8} \times ?=\frac{5}{4}, ?=\frac{5}{4} \times 8=10$, so the missing number in the function machine is 10 .

13 Marcus is incorrect. Learner's own explanations. For example:

His conjecture is correct for the first function $y=(x-5)^{4}$. When you work out $x-5$, if the answer is positive or negative, once you have raised it to the power of 4 , the answer is always positive. For example, $3^{4}=(-3)^{4}=81$.

His conjecture is incorrect for the second function $y=5-x^{5}$. If x^{5} is greater than 5 , the y-value will be negative. For example: when $x=2, y=5-2^{5}=5-32=-27$.

Exercise 10.1

1	a	$20+15 \times 4=\$ 80$	b	\$170
	c	$y=15 w+20$		
2	a	20 kg	b	$2 x+4 y=22$
3	a	$a+b=36$	b	23
	c	$b=3 a$		
4	a	24		
	b	i $4 s+6 l=40$		ii 2
5	a	84 minutes	b	$t=2 g-20$
	c	36 minutes		
6	a	85	b	$5 p+6 h=100$
	c	15 (with two pen		

7 a, b Learner's own answers.
$8 y=10+x$ because all the other functions are equivalent.

9 a $\quad r+b=18$ b $r+4 b=27$
c $\quad 15$ red and 3 blue

Exercise 10.2

1 a

\boldsymbol{x}	-1	0	1	2	3	4
\boldsymbol{y}	7	12	17	22	27	32

b at $(0,12)$
c $5 \times 5+12=37$, but $5 \times 10+12=62$
2 a

\boldsymbol{x}	-10	0	10	20	30	40
\boldsymbol{y}	8	10	12	14	16	18

b at $(0,10)$
c 11.4
3 a

\boldsymbol{x}	0	5	10	15	20	25
\boldsymbol{y}	20	15	10	5	0	-5

b at $(0,20)$ and $(20,0)$
4 a

x	0	1	2	3	4	5	6
y	10	8	6	4	2	0	-2

b Learner's own graph; A straight line through $(0,10)$ and $(5,0)$.
c 3.5
5 a

x	0	3	6	9	12	15
y	4	3	2	1	0	-1

b Learner's own graph; A straight line through $(0,4)$ and $(12,0)$.
c
at (4.5, 2.5)
6 a

x	0	6	2	5
y	9	0	6	1.5

b Learner's own graph; A straight line through $(0,9)$ and $(6,0)$.
c
at $(0,9)$ and $(6,0)$
7 a

x	-3	-2	-1	0	1	2	3
y	6	1	-2	-3	-2	1	6

b Learner's own graph; A parabola with the bottom at $(0,-3)$.
c $\quad 5^{2}-3=22$
d Yes; $(-9)^{2}-3=78$
8 a

x	-3	-2	-1	0	1	2	3
$x^{2}+1$	10	5	2	1	2	5	10

b and c

d It is on $y=x^{2}-1$.
9 a

x	0	12	4	8
y	9	0	6	3

b Learner's own graph; A straight line through $(0,9)$ and $(12,0)$.
c Learner's own graph; A straight line through $(0,6)$ and $(8,0)$.
d Learner's own graph; A straight line through $(0,3)$ and $(4,0)$.

10 a $6 \times 5+5 \times 6=60$
b at $(0,12)$ and $(10,0)$
c Learner's own graph; A straight line through $(0,12)$ and $(10,0)$.

11 a Learner's own graph; A straight line through $(0,7)$ and $(14,0)$.
b Learner's own graph; A straight line through $(0,12)$ and $(4,0)$.
c $(2,6)$
12 a $\quad \mathbf{A}$ is $y=x^{2} ; \mathbf{B}$ is $y=x^{2}-4$
b i 49 ii 45
c 5 and - 5

Exercise 10.3

1
b
c gradient 0.5 and y-intercept -2.5
2 a gradient $\frac{1}{3}$ and y-intercept $\frac{10}{3}$
b gradient 0 and y-intercept 12
c gradient -30 and y-intercept -45
$\begin{array}{lllllll}3 & \text { a } & \frac{1}{2} & \text { b } & -\frac{1}{3} & \text { c } & -2\end{array}$
4 a $y=15-x$
b gradient -1 and y-intercept 15
c $(15,0)$
5 a $y=4-\frac{1}{3} x$
b gradient $-\frac{1}{3}$ and y-intercept 4
c

x	0	12	6	3
y	4	0	2	3

d Learner's own graph; A straight line through $(0,4)$ and $(12,0)$.
e Learner's own checks.
6 a $4 \times 2.5=10$ and $20-10=10$
b $y=\frac{1}{4} x-2 \frac{1}{2}$
c gradient $\frac{1}{4}$ and y-intercept $-2 \frac{1}{2}$
7 a
C $-\frac{3}{5}$
b $\quad \mathbf{C} 2$

8 A and iv, \mathbf{B} and ii, \mathbf{C} and iii, \mathbf{D} and \mathbf{i}
9 a gradient -0.2 and y-intercept 2
b gradient -2.5 and y-intercept 5
c gradient -1 and y-intercept 0.4
10 a $4 \times 0-2 \times(-6)+8=0+12+8=20$
b $\quad 4 \times 5-2 \times 4+8=20-8+8=20$
c $y=0.5 x+3$
d gradient 0.5 and y-intercept 3

Exercise 10.4

1 a 400 m
b gradient $=8$; the speed is $8 \mathrm{~m} / \mathrm{s}$
c $y=8 t$
d 560 m
2 a 15 dollars
b 6 dollars/metre
c $d=6 x$
d 51 dollars
e 5 metres
3 a i 14 dinars
b 0.35
c $y=0.35 x$
d 32.55 dinars

4 a

Time (hours)	0	5	10
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	20	17	14

b -0.6 ; the temperature decreases at a rate of $0.6^{\circ} \mathrm{C} /$ hour
c $y=20-0.6 t$
d $12.8^{\circ} \mathrm{C}$
5 a i 15000
ii 23000
iii 27000
b $400 /$ year or 0.4 thousand/year
c $p=0.4 t+15$
6 a Learner's own graph; A line from the origin through $(25,42)$.
b about 30 dollars
c The gradient is $42 \div 25=1.68$, so the equation is $d=1.68 l$.
d 30.24 is the exact value
e 100.8 dollars
f 40 litres
7 He is not correct. Priya's speed is $50 \mathrm{~km} / \mathrm{h}$ and Mei's is $60 \mathrm{~km} / \mathrm{h}$.

8 a Learner's own graph; A straight line from $(0,12)$ through $(20,40)$.
b 33 litres
c 1.4 litres/second
d $y=1.4 x+12$

9 a Learner's own graph; A line from the origin through $(50,875)$.
b $y=17.5 x$
c You can exchange 1 Franc for 17.5 Rand.
d 2275 Rand
10 a Learner's own graph; A straight line from $(0,300)$ to $(120,0)$.
b 75 m
c $\quad 2.5 \mathrm{~m} / \mathrm{s}$
d $y=300-2.5 x$ (learners could use other letters).

Exercise 11.1

1 a Flour: 2 parts $=250 \mathrm{~g}$,

$$
1 \text { part }=250 \div 2=125 \mathrm{~g}
$$

Butter: 1 part $=125 \mathrm{~g}$
b Total $=250+125=375 \mathrm{~g}$
2 a Peach juice: 3 parts $=450 \mathrm{~mL}$, 1 part $=450 \div 3=150 \mathrm{~mL}$

Pineapple juice: 4 parts $=4 \times 150=600 \mathrm{~mL}$
b Total $=450+600=1050 \mathrm{~mL}$
3 Tina: 5 parts $=\$ 65 \rightarrow 1$ part $=65 \div 5=\$ 13$
Kim: 2 parts $=2 \times 13=\$ 26$
Total they share $=65+26=\$ 91$
4 a Benji: 2 parts $=\$ 24$, 1 part $=24 \div 2=\$ 12$
Abdul: 1 part $=\$ 12$
Caen: 3 parts $=3 \times 12=\$ 36$
b Total $=12+24+36=\$ 72$
5 a 21
b 35
6 a 180 g
b $\quad 480 \mathrm{~g}$
7 a 6, 15, 24
b 45
8 a Instead of using $\$ 40=5$ parts (for travel) he has used $\$ 40=4$ parts (for food).
He has also added up the total number of parts incorrectly. The total is 16 not 15 .
b 5 parts $=\$ 40$, so 1 part $=40 \div 5=\$ 8$
Total number of parts $=4+7+5=16$
Total spent $=16 \times 8=\$ 128$
9650 mL

10 a \$135
b Zosia gets $\$ 60$, Abie gets $\$ 75$
$1112: 16 \rightarrow$ divide both numbers by $4 \rightarrow 3: 4$
$9: 12 \rightarrow$ divide both numbers by $3 \rightarrow 3: 4$
12550 mL vanilla ice cream, 2200 mL grape juice, 2750 mL ginger ale. Learner's own method.
For example:
Grape juice: $2250 \div 4=562.5 \mathrm{~mL}$ per part,
Ginger ale: $2750 \div 5=550 \mathrm{~mL}$ per part.
Use 550 mL per part as smallest amount.
Ice cream: $1 \times 550 \mathrm{~mL}=550 \mathrm{~mL}$,
Grape juice: $4 \times 550 \mathrm{~mL}=2200 \mathrm{~mL}$,
Ginger ale: $5 \times 550 \mathrm{~mL}=2750 \mathrm{~mL}$
130.03 and 0.025 or 0.036 and 0.03
1422.5 cm

15 a $90^{\circ}, 35^{\circ}$ and 55° or $90^{\circ}, 70^{\circ}$ and 20°
b Two solutions. Learner's own explanation. For example: The 20° difference could be between the right angle and one of the other angles, or it could be between the two other angles (not the right angle).
c $35^{\circ}: 55^{\circ}: 90^{\circ} \rightarrow 7: 11: 18$ or $20^{\circ}: 70^{\circ}: 90^{\circ} \rightarrow 2: 7: 9$

16 a

Activity	Child: staff ratio	Number of children	Number of staff
Horse- riding	$4: 1$	22	$22 \div 4=5.5$ so 6
Sailing	$5: 1$	17	$17 \div 5=3.4$ so 4
Rock- climbing	$8: 1$	30	$30 \div 8=3.75$ so 4
Canoeing	$10: 1$	26	$26 \div 10=2.6$ so 3

Total number of staff $=6+4+4+3=17$
b Learner's own answer. For example: Move two children from horse riding to rock climbing and move two children from sailing to canoeing. New table is:

Activity	Child: staff ratio	Number of children	Number of staff
Horse- riding	$4: 1$	20	$20 \div 4=5$ so 5
Sailing	$5: 1$	15	$15 \div 5=3$ so 3
Rock- climbing	$8: 1$	32	$32 \div 8=4$ so 4
Canoeing	$10: 1$	28	$28 \div 10=2.8$ so 3

Total number of staff $=5+3+4+3=15$

Exercise 11.2

$\begin{array}{lllllll}1 & \text { a } & \text { i } & 80 & \text { ii } & 120 & \text { iii }\end{array} 160$
b direct proportion
2 a i $\$ 4.40$ ii $\$ 6.60$
iii $\quad \$ 8.80$
b direct proportion
3 a less time b more time
c i

ii

$$
\times 2\binom{2 \text { people }=6 \text { days }}{4 \text { people }=3 \text { days }} \div 2
$$

inverse proportion
4 a less than 60 seconds
b more than 60 seconds
c i $\times 2\left\{\begin{array}{c}\text { normal speed }=60 \text { seconds } \\ 2 \times \text { speed }=30 \text { seconds }\end{array} ~ \div 2\right.$
ii $\div 2\left\{\begin{array}{c}\text { normal speed }=60 \text { seconds } \\ \frac{1}{2} \text { speed }=120 \text { seconds }\end{array}\right) \times 2$
d inverse proportion
5 a
b

$$
\div 2\binom{4 \text { people }=7 \text { hours }}{2 \text { people }=14 \text { hours }}
$$

$$
\left.\times 2<\begin{array}{c}
4 \text { people }=7 \text { hours } \\
8 \text { people }=3.5 \text { hours }
\end{array}\right) \div 2
$$

c

$$
\left.\times 7<\begin{array}{l}
4 \text { people }=7 \text { hours } \\
28 \text { people }=1 \text { hour }
\end{array}\right) \div 7
$$

91 hour 20 minutes
104 days
11 Zara is incorrect. It will take the same amount of time as 20 minutes is the time the journey takes. It doesn't matter how many people are on the train.
$12 A=14, B=15, C=49, D=7.5$
13 a 169 cm
b $\quad 165 \mathrm{~cm}$
14 a 2 houses
b 12 people
c 15 days

d | People | Days | Houses |
| :---: | ---: | :---: |
| 6 | 20 | 4 |
| 1 | 120 | 4 |
| 1 | 30 | 1 |
| 6 | 60 | 12 |
| 4 | 60 | 8 |

15 a

Number of sheep (x)	5	10	15	20	30	40	60
Number of days (y)	36	18	12	9	6	4.5	3
$x \times y$	180	180	180	180	180	180	180

b $x \times y=180$, yes
c i and iii
Number of days it takes sheep to eat a bag of feed

ii No, the points do not form a straight line.
iv Answer between 25 and 26 days (accurate answer is 25.7 to 1 d.p.)

Exercise 12.1

1	a	$\frac{1}{3}$			b	$\frac{2}{3}$		
	c	$\frac{1}{4}$			d	$\frac{5}{12}$		
	e	$\frac{7}{12}$						
2	a	0.35			b	0.2		
3	a	85%	b	35%		c	20%	
4	a	0.34	b	0.7		c	0.52	
5	a	i	0.45				ii	0.65

9 a T is $3,6,9$ or 12 and F is 5 or 10 and these have no common element.
b i $\quad \frac{19}{36}$
ii $\frac{2}{3}$
iii $\frac{17}{36}$
10 a i $\frac{13}{25}$
ii $\frac{12}{25}$
iii $\frac{22}{25}$
b $\quad 15$ is a multiple of both 3 and 5 , so the events are not mutually exclusive. Adding the probabilities will not give the correct answer.

