> Workbook answers

Exercise 1.1

1	a	-7	b	1	c	-5	d	5
2	a	-2	b	-9	c	9	d	1

$\begin{array}{lllllllll}4 & \text { a } & 15 & \text { b } & -25 & \text { c } & -15 & \text { d } & 17\end{array}$
$\begin{array}{lllllllll}5 & \text { a } & 25 & \text { b } & 5 & \text { c } & 11 & \text { d } & -23\end{array}$
$\begin{array}{lllll}6 & a & -7 & b & 6\end{array}$
c 4 d -10
$\begin{array}{llll}7 & \text { a } & 9 & \text { b } 5\end{array}$
C 2
d $\quad-3$
d 6
d $\quad-90$
$10-6$
11 Two possible answers: -2 or 4 .
12 a $-3+4=1$
b $-5+3=-2$
C $5+-2=3$
13

+	3	-4
2	5	-2
-2	1	-6

14

	-4	6	2
3	7	-3	1
-3	1	-9	-5

15 a

16

One method is to try different numbers in the bottom square. Try to get closer to -6 each time.

Exercise 1.2

1	- 30		b -36	c	-55	d	-49
2	-12		b -4	c	-5	d	-7
3	\times	4	7				
	-2	-8	-14				
	-6	-24	-42				

$\begin{array}{lllllllll}4 & \mathrm{a} & -12 & \mathrm{~b} & -30 & \mathrm{c} & -28 & \text { d } & -30\end{array}$
$\begin{array}{lllllllll}5 & \mathrm{a} & -3 & \mathrm{~b} & -7 & \mathrm{c} & -2 & \mathrm{~d} & -6\end{array}$
$\begin{array}{lllllllll}6 & \text { a } & -8 & \text { b } & -3 & \text { c } & 13 & \text { d } & 5\end{array}$
$\begin{array}{lllllllll}7 & \text { a } & 9 & \text { b } & -4 & \text { c } & -36 & \text { d } & 32\end{array}$
$\begin{array}{lllllllll}8 & \text { a } & -12 & \text { b } & 21 & \text { c } & 8 & \text { d } & -3\end{array}$
$9 \quad$ a $\quad-1200$ b $\quad-900$ c $\quad-1200$ d $\quad-200$
10 a -2 and $9 ; 3$ and $-6 ;-3$ and $6 ; 1$ and -18 ;
-1 and 18
b There are two more, as listed in part a.
11

\times	6	4
-5	-30	-20
-8	-48	-32

12 a i

b i

13 a

b There are two solutions.
14 a $(3+-5) \times 4$ or $(-5+3) \times 4$
b $(-4+7) \times 2=6$. The other possibilities are negative numbers.

15 a - 1 and 20 have a sum of 19 .
b $\quad-1$ and 30 have a sum of 29 .
c For any negative integer, the largest possible sum is the corresponding positive integer -1 . For example: For -15 , the largest sum is $15-1=14$.

Exercise 1.3

1	a	4, 8, 12, 16		7, 14, 21, 28		
	c	12, 24, 36, 48	d	30, 60, 90, 120		
2	9					
3	a	$8,16,24,32,40,48$				
	b	$5,10,15,20,25,30,35,40,45$				
	c	40				
4	a	6, 12, 18, 24, 30	b	6	c	6
5	a	12, 24, 36	b	12	c	12
6	a	30	b	20	c	10

7 The multiples of 3 are $3,6,9,12,15, \ldots$
The multiples of 5 are $5,10,15, \ldots$ So 15 is the lowest common multiple and the multiples of 15 are common multiples.

842
$9 \begin{array}{lllllll}9 & \text { a } & 14 & \text { ii } & 28 & \text { iii } & 42\end{array}$
b Multiply the two numbers.
c It works unless the other number is a multiple of 7 . For example: it works for 7 and 8 , or 7 and 9 , or 7 and 10 , but not for 7 and 14 , or 7 and 21 .

10 a i 90
ii Yes
b i 98
c i 96

130
1272
13 a Because $96 \div 4=24$ and $96 \div 24=4$.
b No; the LCM is 24 because $24=6 \times 4$.

145 and 9
151 and 63; 7 and 9

Exercise 1.4

Exercise 1.5

$128 \div 4=7 ; 28$ is divisible by 4 and so is 5328 ; $5+3+2+8=18$, which is divisible by 9 .

2 a odd $=9+7=16$; even $=3+2=5$;
$16-5=11$
b Yes, the sums are the same. This time
odd $=5$ and even $=16 ; 5-16=-11$.
3 a The last two digits make the number 8, which is divisible by 4 .
b No, the last three digits are not divisible by 8 because $108 \div 8=13$ r. 4 .

4 The sum of the digits is $14+*$. This is a multiple if 3 when it is 15,18 or $21 ; *=1$ or 4 or 7 .

5 1, 7 and 11
6 a i Any number with these digits that ends in 5.
ii Any number with these digits because the sum of the digits is always 12 .
b i No, because the sum of the digits is 12 .
ii Yes. For example: 1254 is a possible answer. The odd and even digit sums must be $1+5$ and $2+4$.

7 For example: $322+7+7=336$
8 It is divisible by 1. $520=8 \times 65$, so it is divisible by $2,4,8$. It is also divisible by 3 and therefore also divisible by 6 . $2+5+2+0=9$, so it is divisible by 3 and 9 . The last digit is 0 , so it is divisible by 5 and 10 . $2520 \div 7=360$, so it is divisible by 7 . Odd $=0+5=5$ and even $=2+2=4$, so it is not divisible by 11 . This shows that 11 is the smallest integer that is not a factor.

9 The numbers with an even number of digits. For example: 99, 9999, $999999, \ldots$

10 a It ends in 5 , so it is divisible by 5 . $7+9+0+5=21$, so it is divisible by 3 . Hence, it is divisible by 15 .
b The final digit must be 0 or 5 . If it is 0 , the other digit is 2,5 or 8 . If the final digit is 5 , then the other digit is $0,3,6$ or 9 . These are the possible numbers: 20805, 20820, 20835, 20850, 20865, $20880,20895$.

111 is a factor. Another factor is 3 because the digit sum is 21 , which is a multiple of 3 . A third factor is 11 because $9+7=16,2+3=5$ and $12-5=11$.

12 It is odd, so it is not divisible by $2,4,6,8$ or 10 .
It ends in 9 , so it is not divisible by 5 .
The sum of the digits is 32 , so 3 and 9 are not factors. Odd digit sum $=15$ and even digit sum $=17$, so 11 is not a factor. The only other possibility is 7 , so that must be a factor.

13 a 1234 or 3456 or 5678 b 3456 or 6789
c 2345
d There are none because odd - even always equals 2 .

Exercise 1.6

1	a	25		85	c	181		
2	a	8	b	10	c	15	d	13
3	a	9	b	152	c	56		
4	a	4	b	0	c	-1		
5	a	6	b	8	c	10	d	12
6	a c	$\begin{aligned} & \sqrt{40} \\ & \sqrt{90} \end{aligned}$			b d		$\begin{aligned} & =25 \\ & =35 \end{aligned}$	
7	a c	$\begin{aligned} & \sqrt[3]{21} \\ & \sqrt[3]{13} \end{aligned}$			b d			
8	a	6	b	15	c	4		
9	a	$\sqrt{90}$ is between 9 and 10 $\sqrt{135}$ is between 11 and 12						
10	14							
11	a	121, 144, 169 and 196						
	b	125						
12	7							
13	a	64 b $\sqrt[3]{64}=4$ and $\sqrt{4}=2$						
14361								
152197								
16		$\sqrt{64}$ 729 Lea	8 an	$\sqrt[3]{64}$ \%wn a	4 $=27$ er.	and $\sqrt[3]{ }$	$=9$	

